
 

 
 
Journal of Nonlinear Analysis and Optimization  

Vol. 15, Issue. 1, No.3 :  2024  

ISSN : 1906-9685 

 
 

 

SOME PROPERTIES OF KNOT HYPERTPATH OF HYPERGRAPHS AND 

INCIDENCE GRAPHS 

 

Saifur Rahman Department of Mathematics, Jamia Millia Islamia, New Delhi- 110025, 

India srahman2@jmi.ac.in 

Raju Doley Department of Mathematics, Rajiv Gandhi University, Rono Hills, Doimukh- 

791112, India raju.doley@rgu.ac.in 

 

Abstract 

Knot hyperpaths, a fundamental concept in hypergraph theory, exhibit unique properties that 

contribute to the understanding of connectivity and traversal patterns in hypergraphs. The article 

delves into some characteriza- tion of knot hyperpaths in hypergraphs and their significance in its 

incidence graph. Moreover, the article motivates a technique for enumerating paths in 

hypergraphs. 
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1 Introduction 

Many real-world problems, whether they have their roots in artificial or natural phenomena, 

involve a network-like structure. Graph theory, the architect of struc- tural connections and 

relationships, simplifies the intricate network through figures dealing with ’points and lines’ 

intuitively. The abstract nature of graphs facilitates various aspects of the analysing process and 

improves visualization of complex, intri- cate relationships among the objects that other 

visualization methods cannot [1, 2]. However, graphs as a tool for modelling are extensively used 

in various fields and actively studied by researchers; they only support pairwise relationships 

between the vertices [3]. By contrast, there are many real-world problems where interactions 

among the objects may not be pairwise [4]. For example, in the case of the spread of infectious 

disease, where the rate of infection may be high and transmission of disease could occur in some 

groups of people, in the process of decision-making, such as in a grading system, where an object 

may have a higher rate of acceptance by multiple users, etc. It is to be noted that the complexity 

encountered by such highly heterogeneous systems, where the interactions of the objects are not 

necessarily pairwise, may be modelled by hypergraphs [5]. 

Claude Jacques Berge introduced hypergraph in 1973, as a means to generalise the approaches 

of graphs preserving the multi-adic relationship of the objects [6]. Thus, hypergraph becomes 

more natural models for studying the complexity of multi-adic relationships, which are currently 

attracting a lot of interest [7]. Essen- tially, the application of hypergraphs is not confined to 

specific domains. In fact, it transcends specific fields of study and making it a fundamental 

component in interdisciplinary research work as well. It is to be noted that, many fundamental 

concepts like path, cycle, tree, connectivity, coloring problems, etc. in graphs have been 

generalized to hypergraph theory, and their different well-known properties have been studied 

[8, 9, 10, 11]. Particularly, the concept of path in hypergraph has been studied in different ways 

and has gain lots of attention in past as it rep- resents the foundation of many research works. For 

instance, the problem related to shortest path like K-shortest hyperpaths in a directed hypergraph 

[12], connec- tivity measures using the concept of flags and pseudo path [13], eulerian circuit in 

hypergraphs using different sub edge in walk [14] and many more explicitly. Re- cently, Rahman 
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et al. [15], introduced the concept of the knot and knot hyperpath of a hypergraph. A knot tend 

to be a fundamental concept in the hypergraph as it physically signifies the set of non-empty 

subset of some intersecting hyperedges. Moreover, using the concept of knot and strength of knot 

cut knot has been studied in [16] and studied the notion of separability in hypergraphs. 

At the same time, it is geometrically evident that the intensity of connectiv- ity in 

hypergraphs varies across different regions with respect to both vertex and hyperedge connections. 

Thus, it is expedient to have a measure of the connect- edness of the vertices and hyperedges in 

a hypergraph. One way of doing this is by transforming the problem of hypergraphs into the 

problem of graphs. Thus, by leverging the inherent unique properties of the graph, the problems 

associated with great complexity can be solved or optimised with ease. Therefore, it is of interest to 

consider the notion of the incidence graph of the hypergraph. Since incidence graph representation of 

a hypergraph not only preserves the multi-adic relationships but also helps in visualization of the 

hypergaph as well into simpler form. 

The subsequent sections of the article are structured as follows: Section 2 includes preliminary 

definitions with suitable examples. In Section 3, the key concept of knot hyperwalk in 

hypergraphs introduced in Section 2 has been characterised in its incidence graphs. Some results 

are also dedicated to hypertree and establish some examples, followed by a brief discussion on 

future perspectives with a conclusion section that ends our study. 

 

2 Basic definitions and notations 

As given by Berge [17], a hypergraph is a pair H = (V, E), defined on a finite set of elements 

V = {v1, v2, · · · , vn} called a vertex set, where the elements are called vertices, and E = {e1, e2, 

· · · em} is a collection of non-empty subsets of V called hyperedges or simply edges of the 

hypergraph. The cardinality of the vertex set V , that is, |V |, and the cardinality of the edge 

set E, that is, |E|, are known as the order and size of the hypergraph, respectively. The degree 

of a vertex v ∈ V of a hypergraph H = (V, E) is the number of hyperedges containing the vertex 

v, whereas the degree of a hyperedge e ∈ E is the number of vertices contained in e. In a 

hypergraph, if the family of hyperedges satisfies i ≠ j ⇐⇒ ei ≠ ej, we say that H is without 

repeated hyperedge, and if ei ⊂ ej ⇒ i = j, then we call H a simple hypergraph. In this paper, 

all hypergraphs are considered simple hypergraphs, and the occurrence of repeated hyperedges 

does not arise. For more general information on hypergraphs and graphs, readers may refer to [17] 

and [18], respectively. 

Definition 2.1. [15] A knot K in a hypergraph H = (V, E) is a non-empty subset of some 

intersecting hyperedges, denoted by K ⊆ ∩ei, where e ∈ E, i = 1, 2, · · · , k and k ≥ 2. In particular, 

if K = ∩ei for all ei ∈ E, then K is called an entire knot. 

Definition 2.2. Let H = (V, E) be a hypergraph and v1, vn ∈ V . A knot hyperwalk joining v1, 

vn ∈ V in H is an alternative sequence of knots and hyperedges of the form 

W ≡ {v1}e1K1e2K2e3 · · · en−1Kn−1en{vn} 

satisfying the following properties: 

1. v1 ∈ e1 and vn ∈ en, 

2. Ki ⊆ (ei ∩ ei+1) are knots and Ki ≠ Ki+1, where i = 1, 2, · · · , n − 1, and 

3. ei ∈ E are hyperedges (not necessarily distinct). 

In W , as defined above in Definition 2.2, if each hyperedge is distinct, then the knot hyperwalk 

is said to be a knot-hypertrail. Moreover, a knot hyperwalk in which neither knots nor hyperedges 

are repeated is called a knot hyperpath [15]. It is to be noted that if Ki = ei ∩ ei+1 for all i = 1, 

2, · · · , n − 1, then the knot-hyperwalk is called the entire knot-hyperwalk; analogously, the entire 

knot-hypertrail and the entire knot hyperpath can be defined. Moreover, if the end vertices 

coincide, then the knot hyperwalk (trail) is said to be a closed knot hyperwalk (tour), respectively. 

Definition 2.3. [16] A hypergraph H = (V, E) is said to be a cyclic hypergraph if there 

exist an entire knot hypercycle 

{v1}e1K1e2K2e3 · · · en−1Kn−1e1{vn} 

such that e1, e2, · · · , en−1 are the only hyperedges of the hypergraph H. 

As an illustration of the above definitions, the following example has been dis- cussed: 
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Example 2.1. Let H = (V, E) be a hypergraph with the vertex set V = {vi|i = 1, 2, · · · , 

20} and hyperedges E = {ei : i = 1, 2 · · · , 8}, where e1 = {v1, v2, v3, v4}, e2  = {v4, v5, v6, v7, 

}, e3  = {v7, v8, v8, v9, v10, v11}, e4  = {v11, v12, v13, v14}, e5  = {v14, v15, v16, v17}, e6 = 

{v16, v17, v18}, e7 = {v3, v4, v17, v19, v20}, and e8 = {v10, v11, v20}. 

The hypergraph H = (V, E) is shown in Figure 1. All the possible knots and entire 

knots can be listed as follows: Let K1 = {v4} = e1 ∩ e2 ∩ e7 = e1 ∩ e2, 

 
Figure 1: Hypergraph H = (V, E) representing Example 2.1. 

K2 = {v3} ⊂ e1 ∩ e7, K3 = {v3, v4} = e1 ∩ e7, 

K4 = {v7} = e2 ∩ e3, K5 = {v10} ⊂ e8 ∩ e3, K6 = {v10, v11} = e8 ∩ e3, 

K7 = {v11} = e3 ∩ e8 ∩ e4, K8 = {v12} ⊂ e3 ∩ e4, K9 = {v11, v12} = e3 ∩ e4, K10 = 

{v15} = e4 ∩ e5, K11 = {v17} = e5 ∩ e6 ∩ e7, K12 = {v18} ⊂ e5 ∩ e6, 

K13 = {v17, v18} = e5 ∩ e6 and K14 = {v20} = e7 ∩ e8. Observe that, 

 

1. W  ≡ {v20}e7K1e2K4e3K5e8K14e7K11e6{v19} is a knot hyperwalk, but not a knot hypertrail, 

because the hyperedge e7 occurs twice. 

2. W ′ ≡ {v20}e8K5e3K4e2K1e7K11e6{v19} is a knot hypertrail. Moreover W ′ is a knot 

hyperpath joining v20 and v19. 

3. P ≡ {v16}e5K10e4K7e8K14e7K11e5{v18} is a knot hypercycle. However, the hypergraph 

H = (V, E) is not cyclic (see Definition 2.3). 

Definition 2.4. Let H1 = (V1, E1) and H2 = (V2, E2) be two hypergraphs. Two knot 

hyperpaths 

And 

P ≡ {v1}e1K1e2 · · · en−1Kn−1en{vn} 

P′ ≡ {v′1}e′1 K′1e′2…….e′n-1K′n-1e′n{v′n} 

of the same length in H1 and H2, respectively, are said to be equivalent if there exists a 

mapping f from V1 to V2 satisfying the following conditions: 

i. ei ∩ f −1(e′) ̸= ∅ for all i = 1, 2, · · · n. 

ii. Ki ∩ f −1(K′) ̸= ∅ for all i = 1, 2, · · · n − 1. 

The definition is illustrated in the following example 

Example 2.2. Let H1 = (V1, E1) and H2 = (V2, E2) be two hypergraphs, where 

V1 = {v1, v2, · · · v14}, E1 = {e1, e2, · · · , e5} such that e1 = {v1, v2, v3, v11}, e2 = 

{v2, v6, v10, v11}, e3 = {v2, v4, v6, v9, v11, v13}, e4 = {v4, v7, v8, v9, v12}, e5 = {v4, v5 v9, v12, 

v14}, and V2 = {v′
1 , v2, · · · , v

′
10 },  

e′1 = {v′
1 , v

′
2 ,v′3 }, e′ e′2= {v′2 , v

′
3 , v

′
7 , v

′
9 }, e′

3 = 

{v′4 , v′7, v′10}, e′4 =  {v′
4 , v

′
6 ,v′8 }, and  e′

5 =  {v′
4 , v

′
5 , v

′
8 ,v′10 }. The graphical representations 

for H1 and H2 are shown below in Figure 2(a) and Figure 2(b), respectively. We consider two knot 

hyperpaths, 

P ≡ {v1}e1{v2 ,v11}e2{v6}e3{v4,v9}e4{v7} 

And 

P ≡ {v′1}e′1{v′2}e′2{v′7}e′3{v′4}e′4{v′6} 

of length 4 of H1 and H2, respectively. Define f : V1 −→ V2 by f (v1) = v1, f (v2) = 

v3
′ , f (v3) = v′

2 , f (v4) = v′
4 , f (v5) = v′

5 , f (v6) = v′
7 , f (v7) = v′

6 , f (v8) = v′
8 , f(v9) = 

v′
10, f (v10) = v′

9, f (v11) = v′
2 , f (v12) = v′

8 , f (v13) = v′
10, and f (v14) = v′

5. Then, f 
−1(v′

1) = v1, f 
−1(v′

2) = {v3, v11}, f −1(v′
3) = v2, f 

−1(v′
4) = v4, f 

−1(v′
5) = {v5, v14}, f 
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1 
−1(v′

6) = v7, f −1(v′
7) = v6 , f −1(v′

8) = {v8, v12} f −1(v′
9) = v10, f −1(v′

10) = {v9, 

v13}, and f −1(v′
1) = v1. Thus, P and P ′ satisfies the two conditions ei ∩ f −1(e′1

′) ≠ ∅ 

and Ki ∩ f −1(K′1
′) ≠ ∅. Hence P and P ′ are equivalent hyperapths. 

Figure 2: Hypergraphs H1 = (V1, E2) and H2 = (V2, E2) with equivalent hyperpaths. 

Remark 2.1. If the mapping f in Definition 2.4 is from V to V of a hypergraph, then the 

definition coincide with Definition 6 of [15]. 

Definition 2.5. [13] Let H = (V, E) be a hypergraph. The incidence graph IH of 

H is the graph IH = (VG, EG) with VG = V ∪ E and EG = {ve : v ∈ V, e ∈ E}. 

For our convenience, we denote a walk in incidence graph IH of a hypergraph H 

as a sequence of v−vertices and edges of the form 

v1(v1e1)e1(v2e1)v2(v2e2)e2  · · · vn−1(vn−1en)en(envn)vn 

joining v1 and vn in IH, where (viei) are edges in IH. For instance, consider 

W = {v2}(v2e1){e1}(e1v3){v3}(v3e2){e2}(e2v7){v7} 

is a path joining v2 and v7 in IH of H in Figure 3. 

Example 2.3. The incidence graph IH of H = (V, E) in Example 2.2 as shown in Figure 2(a) 

can be represented as shown below in Figure 3. 

Figure 3: Incidence graph IH of H = (V, E) in Example 2.2, Figure 2(a). 

 

3 Characterization of Knot hyperpaths in IH 

In this section of the paper, some characterization of knot hyperwalk (path) of hypergraphs 

introduced in Section 2 with respect to its incidence graph has been done. 

Lemma 3.1. Let H = (V, E) be a connected hypergraph, and let IH be the incidence graph 

of H. Then, for every knot hyperpath P in H, there exists a path P ′ in IH. 

Proof. Let P ≡ {v1}e1K1 · · · en−1Kn−1en{vn} be a knot hyperpath in H, and let IH be the 

incidence graph of H. By Definition 2.2, v1 ∈ e1 and vn ∈ en; therefore, (v1e1) and (vnen) are 

edges in IH joining v1 with e1 and vn with en, respectively. Since for each i, Ki is a non-

empty subset of ei ∩ ei+1, we can choose a vertex vi+1 ∈ Ki. Therefore, vi+1 ∈ ei and vi+1 

∈ ei+1. It follows that vi+1 incident in ei and ei+1.  Thus, (vi+1ei) and (vi+1ei+1) are edges 

in IH.  Thus, we obtain an alternating sequence P  ≡ v1(v1e1)e1(v2e1)v2(v2e2)e2 · · · en(envn)vn 

of vertices and 

edges in IH corresponding to the knot hyperpath P in H (see Figure 4). 
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Figure 4: Schematic diagram of path P in incidence graph IH for Lemma 3.1. 

The converse is not true. However, if the end vertices of any path in IH are v− 

vertices, then the converse is also true. 

Proposition 3.2. Let H = (V, E) be a hypergraph, and let IH be the incidence graph of H. 

Then, for any path P ′ in IH, whose ending vertices are v−vertices, a knot hyperpath 

corresponding to P ′ can be generated in H. 

Proof. Any path in IH must be in the following form: 

P ′  =  v1(v1e1)e1(v2e1)v2(v2e2)e2 · · · en−1(vnen−1)vn(vnen)en(vn+1en)vn+1. 

Since v1 ∈ e1 and v2 ∈ e1 ∩ e2, choose {v2} ⊆ K1 ⊆ e1 ∩ e2 ̸= ∅. Since v2 ̸= v3 and v3 ∈ e2 ∩ e3, 

choose {v3} ⊆ K2 ⊆ e2 ∩ e3 − K1. This process may be continued. After (n-2)th steps, we can 

choose 

{vn} ⊆ Kn−1 ⊆ en−1 ∩ en − ⋃ 𝐾𝑖
𝑛−2
𝑖=1  

Since the last vertex vn+1 in IH is adjacent to en, we have vn+1 ∈ en in H. Hence we obtain a 

sequence of knots and hyperedges 

P  ≡ {v1}e1K1e2K2e3 · · · Kn−1en{vn+1} 

such that Ki ⊆ ei ∩ ei+1 - ⋃ 𝐾𝑗
𝑖−1
𝑗=1  for each i = 2, 3, · · · n − 1. Hence, P is a knot 

hyperpath in H. 

Proposition 3.3. Let H = (V, E) be a hypergraph, and let IH be its incidence graph. For 

every knot hyperpath P of length l in H, there exists a path P ′ of length 2l in IH. 

Proof. We proceed with the proof by induction on l. If l = 1, that is, P ≡ {v1}e1{v2} a knot 

hyperpath of length 1 in H, then by Lemma 3.1, the corresponding path of P in IH must be of 

the form P ′ = v1(v1e1)e1(v2e1)v2. Since (v1e1) and (v2e2) are two edges in P′1. Thus, P′1 = 

v1(v1e1)e1(v2e2)v2 is a path of  

in IH. We assume                

               length 2 

that the result is true for m < l. If 

P1 ≡ {v1}e1K1e2K2 · · · em−1Km−1emKmem+1{vm+2} 

is a knot hyperpath of length m + 1 in H. Then P1 can be written as the union of two 

hyperpaths P1 = P ′ ∪ P ′′, where 

1 1 

P ′  ≡ {v1}e1K1e2 · · · em−1Km−1em{vm+1} 

And 

P ′′ ≡ {vm+1}em+1{vm+2} 

with vm+1 ∈ Km ⊆ em ∩ em+1. Since the lengths of the knot hyperpaths P ′1 and Pn
1 

are m and 1, respectively, the corresponding paths P ′2 and Pn
2 in IH must be of the 

form 

and 

P ′  = v1(v1e1)e1(v2e1)v2(v2e3)e3 · · · (vmem)em(emvm+1)vm+1 

P ′′ = vm+1(vm+1em+1)em+1(em+1vm+2)vm+2 

with lengths 2m and 2, respectively. Since vm+1 ∈ Km ⊆ em ∩ em+1, the path 

P2 = P ′2 ∪ P ′2 in IH is of length 2(m + 1). 

Theorem 3.4. If P ≡ {v1}e1K1 · · · ek−1Kn−1ek{vn} is an entire knot hyperpath in a 

hypergraph H = (V, E), then |K1| × |K2| · · · |Kn−1| number of paths can be constructed in IH 

corresponding to P joining v1 and vn. 

Proof. Let P ≡ {v1}e1K1 · · · en−1Kn−1en{vn} be an entire knot hyperpath in a hypergraph H. 
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Let |Ki| = ri, where i = 1, 2, ..., n − 1. For each i, any vertex v in Ki incident in both the 

hyperedges ei and ei+1. It follows that (vei) and (vei+1) are edges in IH joining v with e1 and 

e2, respectively. Since |Ki| = ri, by Lemma 3.1, ei and ei+1 can be joined by ri ways in IH. 

For each such links, we shall have a path in IH corresponding to P . For r1 different vertices 

in K1, r1 paths can be constructed in IH corresponding to P , and, independently, for r2 

different vertices in K2, r2 paths can be constructed in IH corresponding to P . Together with 

r1 × r2 paths can be constructed in IH corresponding to P . 

This further continues till the last entire knot and since the last knot is Kn−1, the process 

terminates after (k − 1)th steps. Thus continuing successively in the similar fashion for each such 

entire knot Ki, i = 3, 3, ..., n − 1 in P of H, r1 × r2 × · · · rn−1 paths can be constructed in IH 

corresponding to P . 

Corollary 3.5. If P ≡ {v1}e1K1 · · · ek−1Kn−1ek{vn} is an entire knot hyperpath in a 

hypergraph H = (V, E) with |Ki| = r for some positive integer, then rk−1 number of paths can 

be constructed in IH corresponding to P joining v1 and vn. 

Proposition 3.6. Let H = (V, E) be a hypergraph. If the incidence graph IH of H is a 

tree, then H is a hypertree with every knot having cardinality 1. But the converse is not 

true. 

Proof. Let us assume that the incidence graph IH of a hypergraph H is a tree. Since every tree 

is a connected graph, the hypergraph is also connected, and vice versa. 

Firstly, we show that H is a hypertree. Later, we claim that every entire knot of H 

has cardinality 1. 

To show that H is a hypertree, it will be sufficient if we show that every knot K in H is of 

strength greater than or equal to 1 ([16] Theorem 3.8). We proceed with the proof by using the 

method of contradiction. If possible, let us assume that there exists a knot K in H such that St(K) 

= 0; this implies that the removal of the knot K from H does not disconnect the hypergraph. 

Thus, there exist at least two distinct entire knot hyperpaths 

P1 ≡ {u}e1K1e2K2 · · · Kn−1en{v} 

and 

P2 = {u}e′
1 K’1e′

2K
 ‘

2 · · · K′
n-1e′

n{v} 

joining two distinct vertices u and v in H. Then, by Lemma 3.1, there exist two distinct 

paths 

P1 = u(ue1)e1(v2e1)v2(v2e2)e2 · · · vn−1(vn−1en)en(ven)v 

and 

P’1 = u(ue’1)e’1(v’2e’1)v’2(v’2e’2)e’2 · · · v’n−1(v’n−1e’n)e’n(ve’n)v. 

corresponding to P1 and P2 joining u and v in IH, which is a contradiction to the  

fact that there exists a unique path joining any two vertices in a tree. Hence, H is a hypertree. 

Since Ki = (ei ∩ ei+1) Kj is an entire knot. Suppose K ⊆ e ∩ e′ is a knot in H with |K| > 1. 

Let u, v ∈ Ki be two distinct vertices. Since both u and v are adjacent to each intersecting 

hyperedge e and e′ in H, a cycle 

u(ue)e(ve)v(ve′)e′(ue′)u 

can be formed in IH (Figure 5). This shows that IH is not a tree, a contradiction. Hence, |K| 

= 1 for every entire knot K in H. The converse does not hold true; for 

Figure 5: Cycle representation in IH. 

instance, consider the hypergraph H = (V, E), where V = {vi : i = 1, 2, 3, · · · , 7} and E = 

{e1, e2, e3, e4} such that e1 = {v1, v2, v3}, e2 = {v1, v3, v4}, e3 = {v3, v5, v6}, and e4 = {v3, v6, 

v7} (Figure 6(a)). Clearly, H is a hypertree with each knot’s cardinality 1, but its incidence 

graph IH is not a tree. (Figure 6(b)). 
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Figure 6: A hypertree and its incidence graph. 

 

4 Discussions and Conclusion 

By leveraging the properties of graphs, we have characterized the concept of knot hyperpaths 

introduced by Rahman et al. [15] in its incidence graph. With the concept of incidence graphs, 

which offer a powerful representation of relationships, this study provides a nuanced 

understanding of knot hyperpaths, connectivity, and traversal problems in hypergraphs. The 

findings contribute not only to the theoretical aspects of the hypergraph theory, but they could 

also hold practical implications for optimizing network pathways in various applications in future 

research. However, such development is too early to declare at this moment, but optimistic. 

This research contributes to the broader field of hypergraph theory, offering insights into the 

interplay between knot hyperpaths and incidence graphs. In this article, we are able to charterize 

the knot hyperpath in a hypergraph in its incidence graph. In our opinion, the method could be an 

interesting topic to investigate under the properties of Eulerian and Hamiltonian hypergraphs too. 

That is, such a study could be beneficial for computing the complexities associated with 

enumerating the path-related problems in future studies. 
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